Maths Revision

Number and Place Value

Use numbers from -20 to 10000

Counting

Count forwards and backwards in 4, 6, 7, 8, 9, 25, 50, 100 and 1000
7, 14, 21, 28, 35, 42 ..
625, 600, 575, 550, 525 ...

Find 10,100 or 1000 more or less than a given number
What is 100 less than 1902? What is 1000 more than 3249 ?

Count backwards through zero
$6,5,4,3,2,1,0,-1,-2,-3 \ldots$

Place Value

Recognise the place value of each digit in up to four-digit numbers

Compare and Order Numbers

Compare using <, > or =
$2778<2881$
7662 > 7652

Smallest
1112
1121
1212
1222

Identify, Represent and Estimate

Use models and representations of numbers
2850 can be represented by

Rounding

Round numbers to the nearest 10,100 or 1000
Remember 5 rounds up
45 rounded to the nearest 10 is 50
250 to the nearest 100 is 300

Read and Write Numbers in Numerals and Words

4285 is four thousand, two hundred and eighty-five

Roman Numerals

Use the following Roman numerals to represent numbers to 100:

Roman	Numeral
I	1
V	5
X	10
L	50
C	100

$$
\begin{aligned}
& \text { XIX }=19 \\
& \text { XXVI }=26 \\
& \text { XLVIII }=48 \\
& \text { LXXI }=71
\end{aligned}
$$

Solve Problems

Apply the knowledge and understanding from the above to solve problems

3

What is the largest number that can be made from these digits cards? 7631

Addition and Subtraction

Add and Subtract Mentally

Add and subtract three-digit numbers and ones, tens and hundreds
$376+3=379$
$376+40=416$
$376+200=576$

Formal Methods

$2698+1562$ becomes

2698
+1562
4260
111

4935-2423 becomes

4935
$-\quad 2423$
2512

Answer: 2512

6812-2364 becomes
$6^{78^{\prime}} x^{\prime} 2$
$\begin{array}{r}2364 \\ \hline 4448 \\ \hline\end{array}$
Answer: 4448

Estimate and Inverse

Estimate $4318+1298 \approx 4300+1300 \approx 5600$
Inverse: check 7932-3457 = 4475, by $3457+4475=7932$

Solve Problems

Two-step problems

2891 people visit a cinema on one day. There are three films showing. 549 people see an adventure film, 1263 people see a musical and the rest see an animation. How many see the animation?
$549+1263=1812$ see the adventure and musical
2891-1812 = 1079 see the animation

Multiplication and Division

Multiplication Tables
Multiplication and division facts to 12×12

\mathbf{x}	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1 2}$
$\mathbf{1}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	5	6	7	8	9	10	11	12
$\mathbf{2}$	2	4	6	8	10	12	14	16	18	20	22	24
$\mathbf{3}$	3	6	9	12	15	18	21	24	27	30	33	36
$\mathbf{4}$	$\mathbf{4}$	8	12	16	20	24	28	32	36	40	44	48
$\mathbf{5}$	5	10	15	20	25	30	35	40	45	50	55	65
$\mathbf{6}$	6	12	18	24	30	36	42	48	54	60	66	72
$\mathbf{7}$	$\mathbf{7}$	14	21	28	35	42	49	56	63	70	77	84
$\mathbf{8}$	8	16	24	32	40	48	56	64	72	80	88	96
$\mathbf{9}$	9	18	27	36	45	54	63	72	81	90	99	108
$\mathbf{1 0}$	10	20	30	40	50	60	70	80	90	100	110	120
$\mathbf{1 1}$	11	22	33	44	55	66	77	88	99	110	121	132
$\mathbf{1 2}$	12	24	36	48	60	72	84	96	108	120	132	144

\mathbf{x}	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1 2}$
$\mathbf{1}$	1	$\mathbf{2}$	3	4	5	6	7	8	9	10	11	12
$\mathbf{2}$	2	4	6	8	10	12	14	16	18	20	22	24
$\mathbf{3}$	3	6	9	12	15	18	21	24	27	30	33	36
$\mathbf{4}$	4	8	12	16	20	24	28	32	36	40	44	48
$\mathbf{5}$	5	10	15	20	25	30	35	40	45	50	55	65
$\mathbf{6}$	6	12	18	24	30	36	42	48	54	60	66	72
$\mathbf{7}$	7	14	21	28	35	42	49	56	63	70	77	84
$\mathbf{8}$	8	16	24	32	40	48	56	64	72	80	88	96
$\mathbf{9}$	9	18	27	36	45	54	63	72	81	90	99	108
$\mathbf{1 0}$	10	20	30	40	50	60	70	80	90	100	110	120
$\mathbf{1 1}$	11	22	33	44	55	66	77	88	99	110	121	132
$\mathbf{1 2}$	12	24	36	48	60	72	84	96	108	120	132	144

Multiplying and Dividing

Use place value and known facts: $400 \times 5=2000,630 \div 7=90$
Multiply by 0 and 1 and divide by 1: $285 \times 1=285,285 \times 0=0,285 \div 1=285$

Factor Pairs and Commutativity

The factor pairs of 56 are 1 and 56, 2 and 28,4 and 14,8 and 7.
Use this to solve: 56 pencils are shared between 4 tables. How many pencils does each table receive?

Commutativity means that changing the order of the numbers in a calculation does not change the answer: $5 \times 9 \times 2=5 \times 2 \times 9=10 \times 9=90$

Formal Methods

Use formal methods to multiply 2 and 3 digit numbers by 1 digit numbers

Answer: 108
382×7 becomes
382

Answer: 2394

Solve Problems

Missing number problems: $\square \times 3=45$ or $56 \div \square=14$

Scaling Problems

One pack of pencils contains 12 pencils. How many pencils are there in 8 packs?
$12 \times 8=96$

Correspondence Problems

Jenna has 2 t-shirts and 4 pairs of shorts. How many different combinations of the t-shirts and shorts does Jenna have?

Various answers

120 pencils are shared equally between 3 classes. How many pencils will they each receive?
Using the distributive law

$$
39 \times 7=30 \times 7+9 \times 7=210+63=273
$$

Fractions

Tenths

Counting: $\frac{7}{10}, \frac{6}{10}, \frac{5}{10}, \frac{4}{10}, \ldots$
Dividing into 10 equal parts or by 10

Counting: $\frac{47}{100}, \frac{46}{100}, \frac{45}{100}, \frac{44}{100}, \ldots$
Dividing into 100 equal parts or by 100 or tenths by 10

$32 \div 8=4$
$4 \times 5=20$

Equivalent Fractions

1							
$\frac{1}{2}$				1			
$\frac{1}{4}$		$\frac{1}{4}$		$\frac{1}{4}$		$\frac{1}{4}$	
$\frac{1}{8}$							

1																								
$\frac{1}{3}$								$\frac{1}{3}$									$\frac{1}{3}$							
$\frac{1}{6}$				$\frac{1}{6}$				$\frac{1}{6}$				$\frac{1}{6}$					$\frac{1}{6}$				$\frac{1}{6}$			
$\frac{1}{12}$		$\frac{1}{12}$		$\frac{1}{12}$		$\frac{1}{12}$		$\frac{1}{12}$		$\frac{1}{12}$		$\frac{1}{12}$		$\frac{1}{12}$			$\frac{1}{12}$		$\frac{1}{12}$		$\frac{1}{12}$		$\frac{1}{12}$	
$\frac{1}{24}$		$\frac{1}{24}$	$\frac{1}{24}$	$\frac{1}{24}$	24	24	$\frac{1}{24}$	24	$\frac{1}{24}$	$\frac{1}{24}$														

1																			
$\frac{1}{5}$				$\frac{1}{5}$				$\frac{1}{5}$				$\frac{1}{5}$				$\frac{1}{5}$			
$\frac{1}{10}$		$\frac{1}{10}$		$\frac{1}{10}$		$\frac{1}{10}$		$\frac{1}{10}$		$\frac{1}{10}$		$\frac{1}{10}$		$\frac{1}{10}$		$\frac{1}{10}$		$\frac{1}{10}$	
$\frac{1}{20}$																			

Add and Subtract Fractions with the Same Denominator

Add or subtract the numerator, keeping the denominator the same. The answer can be expressed as an equivalent fraction.

$$
\frac{1}{8}+\frac{3}{8}=\frac{4}{8}=\frac{1}{2}
$$

$$
\frac{5}{8}-\frac{3}{8}=\frac{2}{8}=\frac{1}{4}
$$

\square

Compare and Order

Unit fractions

$$
\begin{aligned}
& \text { smallest } \frac{1}{8} \quad \frac{1}{6} \\
& \text { ninator } \\
& \frac{1}{5}<\frac{3}{5}
\end{aligned}
$$

Fractions with the same denominator

Decimal Equivalents

Tenths and hundredths:
$\frac{7}{10}=0.7$
$\frac{43}{100}=0.43$
$\frac{1}{4}=0.25 \quad \frac{1}{2}=0.5 \quad \frac{3}{4}=0.75$

Division by 10 and 100

$2 \div 10=0.2$
$2 \div 100=0.02$
$25 \div 10=2.5 \quad 25 \div 100=0.25$

Rounding Decimals

To the nearest whole number:
0.5 rounds to 1 because the 5 rounds up
2.35 rounds to 2 because the 3 rounds down (ignoring the 5)

Comparing Decimals

With the same number of decimal places

$$
0.8>0.5 \quad 0.45<0.53
$$

Solve Problems

Adil divides his marbles into tenths. He wants to give two friends a number of the tenths of his marbles and keep the rest himself. Write 3 ways that he could share the marbles.

$$
\text { Eg. } \frac{4}{10}+\frac{1}{10}+\frac{5}{10}
$$

Measure and Money Problems

Ellie buys a new shirt for $£ 4.75$ and a pair of trousers for $£ 3.50$ in a sale. She pays with a $£ 10$ note. What change will she receive?

A bag of potatoes weigh 2.45 kg . How much will 4 bags cost that all weigh the same?

Measurement

Estimate, Measure, Compare, Add and Subtract

In all cases, be able to estimate with some accuracy prior to measuring

Lengths ($\mathrm{mm} / \mathrm{cm} / \mathrm{m}$)

Measure and draw lines using a ruler in centimetres (cm) or millimetres (mm).

This line is 9.5 cm or 95 mm long.

Mass (g / kg)

Measure the mass of objects using different scales
3 apples weigh 435 g . One is eaten, and the 2 remaining apples weigh 285 g . What is the mass of the eaten apple?
$435 g-285 g=150 g$

Capacity (ml/l)

Which jug has more water?

75 ml

90 ml

Convert between units

Length: $1 \mathrm{~km}=1000 \mathrm{~m}, 1 \mathrm{~m}=100 \mathrm{~cm}$ or $1000 \mathrm{~mm} .1 \mathrm{~cm}=10 \mathrm{~mm}$
Mass: $1 \mathrm{~kg}=1000 \mathrm{~g}$
Capacity/ Volume: $1 \mathrm{l}=1000 \mathrm{ml}$
Time: 1 year = 365 days (leap year 366 days), 1 week $=7$ days,
30 days hath September,
Ap ril, June and November.
All the rest have 31,
Excepting February alone Which only has but 28 days clear And 29 in each leap year.

1 day = 24 hours, 1 hour = 60 minutes, 1 minute $=60$ seconds

Perimeter

The perimeter is the measurement around the edge of a shape
\square
The sides of this rectangle are 8 cm and 3 cm , so the perimeter is $\mathbf{2 2 c m}$.

Measure and calculate the perimeter of rectilinear shapes (including squares)

Area

Area of rectilinear shapes by counting squares

Money

Add and subtract giving change
Jude buys and apple and an orange costing 25 p and 15 p. How much change from 50 p?
Estimate how much money in a hand in $£$ and pence.

Time

Analogue clocks and 12/24 hour time
These clocks show quarter to nine:

Record time in hours, minutes and seconds
The maths lesson lasted 1 hour and 5 minutes. The art lesson was one hour and twenty minutes. The art lesson was longer than the maths lesson.

Morning is am, afternoon is pm

A film lasts 136 minutes. How long is the film in hours and minutes?

2 hours and 16 minutes

Geometry - Shape

2D Shapes

Main shapes: circle, triangle, quadrilateral, square, rectangle, rhombus, parallelogram, pentagon, hexagon, octagon, decagon

circle

triangle

quadrilateral

square

rectangle

rhombus

pentagon

hexagon

octagon

decagon

Draw a square on 1 cm squared paper with sides of 4 cm .

The 4 shapes are classified in this Venn diagram.

Triangles

Equilateral (all sides and angles equal)

Isosceles (2 sides and angles equal)

Scalene (no sides and angles equal)

Right-angled triangle (one angle a right angle)

3D Shapes

Main shapes: sphere, cylinder, cube, cuboid, tetrahedron, square-based pyramid, triangular prism, pentagonal prism, hexagonal prism

sphere

cylinder

cuboid

tetrahedron

triangular prism
cube

pentagonal prism
square-based
square-base
pyramid

hexagonal prism

Recognise 2D representations and make models from modelling materials

Angles

An angle measures a turn

A right angle is the corner of a square

2 right angles make a straight line

An acute angle is less than a right angle (90)

An obtuse angle is between a right angle and a straight line.

Lines

Horizontal

Vertical

Parallel Lines
\square

Symmetry

Identify lines of symmetry

Complete a symmetrical figure

Geometry - Position and Direction

Coordinates

What are the coordinates of the point that will complete a rectangle? $(3,1)$

Translation

The triangle A is translated three squares to the right and two squares up to triangle B.

Statistics

Present data in these graphs and tables and solve problems:

Pictograms

How many children chose their favourite colour? 35

Bar Charts

How many more children chose cheese and onion as their favourite crisps than ready salted? 10

Continuous data can have any value - usually a measurement
The Height of Children

How many children are shorter than 1 m? (Add the first 2 bars)

Tables

Here is a table of the chocolate bars sold to customers in a shop over 4 days.

	Monday	Tuesday	Wednesday	Thursday
Saturn	2	1	3	4
Twin	0	2	2	3
Stars	5	3	2	0
Cluster	2	2	2	2
Treasure	1	3	5	0
Tiger	6	3	4	1
Plimmy	1	3	2	2

Which chocolate bar is the most popular? Tiger

Time Graphs

Time graphs show the changing of data over time. These often take the form of line graphs but can also be a bar chart.

Number of Children Who Have a School Meal

How many school meals were served during the week?

Important Vocabulary

This list is not exhaustive. Some vocabulary is described above.

Vocabulary	Meaning
2D shapes	Flat shapes with no thickness. In theory a 2D shape cannot be picked up, but in practice shapes made of paper are counted as 2D. (A list of shapes is included in the section on shape.)
3D shapes	A shape with 3 dimensions that can be picked up. (A list of shapes is included in the section on shape.)
Analogue	A clock face with hands.
Area	The amount of space taken up by a shape.
Calculation	The working out of an answer using addition, subtraction, multiplication or division.
Capacity	How much a container holds.
Commutativity	The answer is the same no matter which way the calculation is completed: e.g. $2+4=4+2$ or $2 \times 4=4 \times 2$.
Denominator	The bottom part of a fraction.
Digit	A single symbol used to make a numeral: 7 (All numbers are made from the ten digits $0,1,2,3,4,5,6,7,8,9,0$.)
Digital	A clock using digits to tell the time.
Discrete	A whole number of a set of objects.
Equivalent fraction	A fraction which has the same value but is divided into a different number of parts: e.g. $\frac{1}{2}=\frac{2}{4}$
Factor	A factor of a number is a number into which the number can be divided with no remainders: e.g. the factors of 8 are $1,2,4$, and 8.
Factor pairs	Factor pairs are 2 factors that are multiplied together to make the number: e.g. the factor pairs of 8 are 1 and 8,2 and 4 .
Fraction	A number express as the number of parts into which the whole has been divided: e.g $\frac{3}{4}$ represents 3 parts out of 4 .
Integer	A whole number with no parts: e.g. 5, 18, 109.
Inverse	An inverse operation is the opposite or reverse of an operation: e.g. the inverse of $6-4=2$ is $2+4=6$ or the inverse of $6 \div 3=2$ is $2 \times 3=6$.
Mass	Often known as weight - how much matter is in an object.
Numeral	A symbol, symbols, word or words that stand for a number: 37 or thirty-seven.

Numerator	The top part of a fraction.
Perimeter	The measurement around an object.
Place value	The value of each digit in any number: In 27 the 2 represents 2 tens.
Polygon	A 2D shape with any number of sides.
Quadrant	A quarter of the space represented by coordinates, bordered by the x and y axes.
Quadrilateral	Any four sided shape.
Rectilinear	A shape with all angles as right angles (the right angle can be inside or outside the shape).
Scale	The mathematical relationship between different measure-ments or number of objects.
The Distributive Law	Multiplying 2 numbers by a number and adding, gives the same answer as multiplying the sum of the 2 numbers by the other number: e.g. $4 \times$ $(3+2)=4 \times 3+4 \times 2$.
Translation	The movement of a shape without rotation or reflection.
Volume	The amount of space taken up by an object.
Weight	Mass is measured by how much something weighs, but this can change in different locations.

