St Joseph's Calculation Policy for families

Dear parents,

This Calculation Policy sets out the methods used in school to help your children with calculations. It has been written to meet the requirements of the National Curriculum 2014, and gives pupils a consistent and smooth progression of learning in calculations across the school. It works alongside the highly effective Singapore style of teaching from the scheme **Maths No Problem!**

Children are taught strategies to develop and strengthen their mental agility daily. They also need to be able to apply written calculation skills in order to:

- represent work that has been done practically
- support, record and explain mental calculations
- keep track of steps in a longer task
- work out calculations that are too difficult to do mentally

This policy shows methods that pupils will be taught within their respective year group, in the order they are taught. Children will be encouraged to develop their confidence in choosing and using a strategy that they know will get them to the correct answer as efficiently as possible.

Concrete, Pictorial, Abstract (CPA):

A key principle behind the Singaporean methods used in Maths No Problem! is the concrete, visual and abstract approach. Children

are firstly introduced to an idea or skill by acting it out with real, **concrete** objects (a hands – on approach). They then move onto the **pictorial** (visual) stage, where they relate the concrete understanding to visual representations. The final **abstract** stage is a chance for them to represent problems by using mathematical calculations. The CPA approach is used continuously in all new learning and calculations throughout the school.

I hope the progression of skills you see in this booklet helps you when supporting your child at home.

Mrs. Corr

Maths Lead

Year 2 Addition

Addition in Year 2 includes:

- solving addition problems:
 - using concrete objects and pictorial representations, including those involving numbers, quantities and measures
 - applying increased knowledge of mental and written methods
- recalling and using addition facts to 20 fluently, and derive and use related facts up to 100
- adding numbers using concrete objects, pictorial representations, and mentally, including:
 - a two-digit number and ones
 - a two-digit number and tens
 - two two-digit numbers
 - adding three one-digit numbers
- showing that addition of two numbers can be done in any order (commutative)
- recognising and use the inverse relationship between addition and subtraction and use this to check calculations and solve missing number problems.

Pupils extend their understanding of the language of addition and subtraction to include sum and difference.

Pupils practise addition and subtraction to 20 to become increasingly fluent in deriving facts such as using 3 + 7 = 10; 10 - 7 = 3 and 7 = 10 - 3 to calculate 30 + 70 = 100; 100 - 70 = 30 and 70 = 100 - 30. They check their calculations, including by adding, to check subtraction and adding numbers in a different order, to check addition (for example, 5 + 2 + 1 = 1 + 5 + 2 = 1 + 2 + 5). This establishes commutativity and associativity of addition.

Recording addition and subtraction in columns supports place value and prepares for formal written methods with larger numbers.

<u>Key Vocabulary</u>

sum, total, parts and wholes, plus, add, altogether, more, is equal to, is the same as

tens and ones are each	then count on in multiples	Add the ones (9 ones + 0
number.	of 10. e.g. 19, 29, 39	ones = 9 ones)
They are taught to always add the ones first and then the tens.	<u>Method 2</u> They are taught to partition the number into tens and ones then add the multiples of 10 and finally add the ones.	Add the tens (1 ten + 2 tens = 3 tens)

Addition with renaming problem:

How many cupcakes are there now?

When solving an addition problem pupils are encouraged to draw a bar model like this to help them to understand the problem. They are taught that when they add they are given the 2 'parts' and are expected to find the 'whole'.

Pupils use equipment such	part whole model and bar	to the written method as
as Dienes and a place value	models.	shown above.
grid to explore how many tens and ones are each	They may also draw	Add the ones:
number.	pictures to represent the	5 ones + 8 ones = 13 ones.
	equipment they have	Rename the ones: 1 ten
They are taught to always	previously used in the	and 3 ones.
add the ones first and then	concrete stage such as	Add the tens:
the tens.	Dienes or counters.	1 ten + 2 tens = 3 tens
		Answer - 33

Pupils will often use a 10 frame to help them discover the number bonds, which will support them with their rapid recall.	Eg: 7 + 3 = 10 then add the 2 = 12. <u>Method 2</u> The pupils are taught to use a numberline and add the second number by	knowledge bonds.	of	number
	the second number by counting on, and then add the third number by continuing to count on.			

Year 2 Subtraction

Subtraction in Year 2 includes:

- solving subtraction problems:
 - using concrete objects and pictorial representations, including those involving numbers, quantities and measures
 - applying their increasing knowledge of mental and written methods
- recall and use subtraction facts to 20 fluently, and derive and use related facts up to 100
- subtract numbers using concrete objects, pictorial representations, and mentally, including:
 - a two-digit number and ones
 - $\circ~$ a two-digit number and tens
 - two two-digit numbers
- show that subtraction of one number from another cannot be done in any order.
- recognise and use the inverse relationship between addition and subtraction and use this to check calculations and solve missing number problems.

Pupils extend their understanding of the language of addition and subtraction to include sum and difference.

Pupils practise addition and subtraction to 20 to become increasingly fluent in deriving facts such as using 3 + 7 = 10; 10 - 7 = 3 and 7 = 10 - 3 to calculate 30 + 70 = 100; 100 - 70 = 30 and 70 = 100 - 30. They check their calculations, including by adding, to check subtraction and adding numbers in a different order, to check addition (for example, 5 + 2 + 1 = 1 + 5 + 2 = 1 + 2 + 5). This establishes commutativity and associativity of addition.

Recording addition and subtraction in columns supports place value and prepares for formal written methods with larger numbers.

<u>Key Vocabulary</u>

take away, less than, difference, subtract, minus, fewer, decrease

A subtraction word	Once they are secure using	Once pupils have
problem is focussed on The	the concrete materials	secured subtracting
problem is jocussed on. The	the concrete materials,	using concrete and
problem is usually linked to	they solve the problem	pictorial mothods they
a concept that the pupils	using pictorial methods,	precional methods, they
will be able to relate to.	such as a number line to	move on to the written
Pupils will use resources	count back or a part whole	method. Children are
such as Dienes or number	model. They may choose to	reminded to start
discs to help them explore	draw a picture of the	subtracting the ones
the problem. They start by	resources they have used.	first and then the tens.
subtracting the ones	Adaths of a (abayun abayus)	Pupils are reminded of
	Method I (shown above)	the importance of lining
6 ones – 0 ones = 6 ones.	Pupils use their previous	up the tens and ones in
Pupils continue to use the	knowledge to count back in	columns accurately
Dianas to subtract the	multiples of ten.	
tone		Subtract the ones
tens.	Method 2 (shown above)	6 ones = 0 ones = 6 ones
3 tens – 2 tens = 1 ten.	They partition the number	
	into tens and ones before	Subtract the tens:
They write the equation	subtracting.	3 tans = 2 tans = 1 tan
out, clearly displaying the	_	3 cens = 2 cens = 1 cen
answer:	e.g. 36 = 3 tens and 6 ones.	
36 - 20 = 16		

equation (swap a ten for	represent the tens and	Pupils are reminded of
ten ones).	ones in columns. They	the importance of
	cross out to show what is	lining up the tens and
Step One	subtracted. The pupils are	ones in columns
Pupils are taught to	encouraged to show where	accurately.
subtract the ones first but	they have renamed.	
at the moment there are		When renaming, cross
not enough tens.	The ones are subtracted	out the original number
Rename one of the tens for	first, then the tens.	and write the new
10 ones. There are now 13		number above (3
ones:	Pupils are also taught how	becomes 13 in the
	to use the part-whole	example). The renamed
13 ones – 5 ones = 8 ones	model (shown above).	number is crossed out
	Pupils partition 23 into 13	and the new number is
Step Two	and 10. They then use their	written above (2 tens
Subtract the tens:	knowledge of number	becomes 1 ten in the
1 ten – 0 ones = 1 ten	bonds to subtract 5 from	example).
	10:	-
Step Three	10 - 5 = 5	
The whole equation is		
written out, and the tens	Add the 5 to the 13 that	
and ones are recombined:	remains:	
23 - 5 = 18	5 + 13 = 18	
	Recombine:	
	23 - 5 = 18	

Year 2 Multiplication

Multiplication in Year 2 includes:

- recalling and using multiplication facts for the 2, 5 and 10 multiplication tables, including recognising odd and even numbers
- calculating mathematical statements for multiplication within the multiplication tables and write them using the multiplication (x), and equals (=) signs
- showing that multiplication of two numbers can be done in any order (commutative)
- solving problems involving multiplication, using materials, arrays, repeated addition, mental methods, and multiplication and division facts, including problems in contexts.

Pupils use a variety of language to describe multiplication and division.

Pupils are introduced to the multiplication tables. They practise to become fluent in the 2, 5 and 10 multiplication tables and connect them to each other. They connect the 10 multiplication table to place value, and the 5 multiplication table to the divisions on the clock face. They begin to use other multiplication tables and recall multiplication facts, including using related division facts to perform written and mental calculations.

Pupils work with a range of materials and contexts in which multiplication and division relate to grouping and sharing discrete and continuous quantities, to arrays and to repeated addition. They begin to relate these to fractions and measures (for example, $40 \div 2 = 20$, 20 is a half of 40). They use commutativity and inverse relations to develop multiplicative reasoning (for example, $4 \times 5 = 20$ and $20 \div 5 = 4$).

<u>Key language</u>

double, times, multiplied by, the product of, groups of, lots of, equal groups, array.

array to represent their	The	pupils	must
multiplication equation.	underst	and that	the
	equation	n 6 x 2 r	neans
	there ar	e 6 groups (of 2.

Year 2 Division

Division in Year 2 includes:

- recalling and using multiplication and division facts for the 2, 5 and 10 multiplication tables, including recognising odd and even numbers
- calculating mathematical statements for division within the multiplication tables and write them using the division (÷), and equals (=) signs
- showing that, unlike multiplication, division of two numbers cannot be done in any order
- solving problems involving division, using materials, arrays, repeated addition, mental methods, and multiplication and division facts, including problems in contexts.

Pupils use a variety of language to describe multiplication and division.

Pupils are introduced to the multiplication tables. They practise to become fluent in the 2, 5 and 10 multiplication tables and connect them to each other. They connect the 10 multiplication table to place value, and the 5 multiplication table to the divisions on the clock face. They begin to use other multiplication tables and recall multiplication facts, including using related division facts to perform written and mental calculations.

Pupils work with a range of materials and contexts in which multiplication and division relate to grouping and sharing discrete and continuous quantities, to arrays and to repeated addition. They begin to relate these to fractions and measures (for example, $40 \div 2 = 20$, 20 is a half of 40). They use commutativity and inverse relations to develop multiplicative reasoning (for example, $4 \times 5 = 20$ and $20 \div 5 = 4$).

<u>Key language</u>

share, group, divide, divided by, half

It is important that the children understand the	4 = how many bags/groups there are.
'bag' is the group.	

Division with sharing problem:

How can the sausages be put equally on 2 plates? What is the number of sausages on each plate?

When solving a division problem, pupils are encouraged to draw a bar model to help them to visualise what they are being asked to do.

1	0
_	.o

Concrete	Pictorial	Abstract
		2 ÷ 2 =
and		4 ÷ 2 =
No. of the second se		6 ÷ 2 =
		8 ÷ 2 =
Put 18 sausages	18 ÷ 2 = 9	10 ÷ 2 =
equally on 2 plates.		12 ÷ 2 =
EN EN		14 ÷ 2 =
		16 ÷ 2 =
		18 ÷ 2 =
		20 ÷ 2 =
A division word problem is focussed on. Concrete materials are used to explore the problem.	Pupils use shapes or pictures to represent quantities to share into the given number of groups.	The pupils make a statement to explain how many cookies there are to share, and how many are grouped for each child.
The pupils use may use		
counters or cubes to		The children will talk
explore what is being		about each part of the
snarea (the sausages),		equation.

and pieces of paper to	Eg:
show how many groups	18 ÷ 2 = 9
they need to share by (2	18 sausages shared
plates).	between 2 plates equals 9
	sausages on each plate.
They then physically	18 = number of
share the 18 'sausages'	'sausages'.
between the 2 'plates'	2 = number of 'plates'.
	9 = number of 'sausages'
	on each 'plate'.

What can you do to help at home?

- Be positive
- Talk about maths with your child
- Involve your child in any maths activity (shopping, cooking, DIY) and let your child lead where they can
- Talk about maths in sport
- Look at number puzzles in papers or magazines
- Share strategies and methods used at school (allow your child to be the expert)

A thought to finish:

Good mathematics is not about how many answers you know – it's how you behave when you don't know'